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ABSTRACT 

 

The partial differential equation arises for the imbibition phenomenon through porous medium yields a non-

linear partial differential equation of parabolic nature. Such equations are very difficult to solve analytically. 

The present paper describes the existence and uniqueness of similarity of this type of equations. 
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I. INTRODUCTION 

 

The non-linear partial differential system governing 

the imbibition phenomenon through porous media, 

as in [1] is given by, 

 
𝜕𝑠

𝜕𝑡
=

𝜕

𝜕𝑥
| 𝑅(𝑆)

𝜕𝑆

𝜕𝑥
|    (1.1) 

and the corresponding boundary and initial 

conditions are 

𝑠(𝑥, 0) = 0     (1.2) 

𝑠(0, 𝑡) = 𝑓(𝑡)      (1.3) 

lim
𝑥→∞

𝑠(𝑥, 𝑡) = 0   for 𝑡 > 0   (1.4) 

 

Equation (1.1) is parabolic at any point (𝑥, 𝑡),  at 

which 𝑠 > 0.  However at points where 𝑠 = 0,  it is 

degenerate parabolic. Because of this degeneracy, 

(1.1) need not always have a classical solution. 

 

A class of weak solution of (1.1) were introduced by 

Oleinik, Kalashnikov and You-Lin [2]. They proved 

existence and uniqueness of such solutions and in 

addition they showed that if at some instant ′𝑡0
′ , a 

weak solution of 𝑠(𝑥, 𝑡0) has a compact support, then 

𝑠(𝑥, 𝑡) has compact support for any 𝑡 ≥ 𝑡0. 

 

Equation (1.1), for 𝑅(𝑠) = 𝜆(1 − 𝛽𝑠), 𝑓(𝑡) = 𝑓0𝑡𝛼  is 

transformed into an ordinary differential equation, 

 

 (𝑓𝑣𝑓′)′ +
𝑣𝛼+1

2𝜆
𝜂𝑓′ −

𝛼

𝜆
𝑓 = 0 (1.5) 

 

with the help of similarity transformation 

 𝜂 =
𝑥

𝑡
𝛼+1

2

, 𝑠 = 𝑡𝛼𝑓(𝜂);  0 < 𝜂 < ∞ 

 

Where 𝜆, 𝑣, 𝛼  are constants and (𝑣, 𝛼) >  −1 , and 

dashes denote differentiation w.r.t. 𝜂.  

 

At the boundaries, we require the condition,  

 

𝑓(0) = 𝑓0 

𝑓(∞) = 0 

 

for fixed 𝑡 ∈ [0, 𝑇] 

The rigorous study of these similarity analysis was 

done by Atkinson and Peletier [3,4] and by 

Shampine [5,6]. They considered the equation, 

 

[𝑘(𝑓) 𝑓′]′ +
1

2
𝜂𝑓′ = 0, 0 < 𝜂 < ∞            (1.6) 
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in which 𝑘(𝑠) is defined, real and continuous for 𝑠 >

0 with 𝑘(0) ≥ 0 and 𝑘(𝑠) > 0 if 𝑠 > 0. Clearly, if we 

set 𝛼 = 0, equation (1.5) becomes a special case of 

(1.6). 

 

In this paper, we extend the analysis of [3] to 

problem 

[𝑓𝑚]′′ + 𝑝𝜂𝑓′ = 𝑞𝑓 0 < 𝜂 < ∞    (1.7) 

𝑓(0) = 𝑓0, 𝑓(∞) = 0    (1.8) 

where 𝑝 =
𝑣𝛼+1

2𝜆
, 𝑞 =

𝛼

𝜆
 in which 𝛼, 𝜆, 𝑣 are arbitrary 

constants. 

Obviously equation (1.7) incorporates equation (1.5) 

and therefore, it is necessary to consider a weak 

solution of the problem (1.7), (1.8). 

  

DEFINITION 

A function 𝑓 is said to be a weak solution of equation 

(1.7),(1.8) if, 

𝑓  is bounded, continuous, and non-negative on 

[0, ∞). 

(𝑓𝑚)(𝜂) has continuous derivative w.r.t. 𝜂 on (0, ∞) 

and 𝑓 satisfies the identity 

∫ 𝜙′{ (𝑓𝑚)′ + 𝑝𝜂𝑓}𝑑𝜂

∞

0

+ (𝑝 + 𝑞) ∫ 𝜙 𝑓 𝑑𝜂

∞

0

= 0 

  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜙 ∈ 𝐶0
1[0, ∞). 

 

Now, we establish the following results. 

Let 𝑓0 > 0 , then problem (1.7), (1.8) has a weak 

solution with compact support if and only if 𝑝 ≥ 0 

and 2𝑝 + 𝑞 > 0. This solution is unique. 

Let 𝑓0 = 0 then problem (1.7), (1.8) has a non-trivial 

weak solution with compact support if and only if 

𝑝 > 0, 2𝑝 + 𝑞 = 0. 

 Suppose if and only if 𝑝 > 0, 2𝑝 + 𝑞 = 0 

 In this case, there exist a one parameter family of 

such solutions. 

 

II. THE METHOD 

 

 Let 𝑓 be a weak solution of problem (1.7), (1.8) with 

compact support in [0, ∞). 

⇒ 𝑓 > 0  in the right neighborhood of 𝜂 = 0 . i.e. 

there exists a number 𝑎 > 0  such that 𝑓 > 0  on 

(0, 𝑎), 𝑓 = 0 on [𝑎, ∞). 

 It was shown in [3] that in a neighborhood of any 

point where 𝑓 > 0, 𝑓 is classical solution of equation 

(1.7). Thus, we shall be concerned with proving the 

existence and uniqueness of a classical positive 

solution o (1.7) on (0, 𝑎)  which satisfies the 

boundary conditions 

   𝑓(0) = 𝑓0       (2.1) 

   𝑓(𝑎) = 0, (𝑓𝑚)′(𝑎) = 0    (2.2)  

The condition at 𝜂 = 𝑎  follows from the 

requirement that 𝑓 and (𝑓𝑚)′  are continuous on 

(0, ∞). 

 

Before turning to the existence, we obtain a 

preliminary non-existence result. 

  

 LEMMA 1 

The existence of non-trivial weak solution of 

equation (1.7) with compact support implies one of 

the following propositions. 

𝑝 > 0 or 

𝑝 = 0 and 𝑞 > 0 

 

 PROOF: 

Suppose, 𝑓 is a non-trivial weak solution of (1.7) 

with compact support. Then there exists 𝑎 > 0, such 

that 

  𝑓 > 0 in (𝑎 − 𝜀, 𝑎) for some 𝜀 > 0 and  

  𝑓 = 0 in [𝑎, ∞). 

Thus in (𝑎 − 𝜀, 𝑎), 𝑓  satisfies (1.7) and at 𝜂 = 𝑎, 𝑓 

satisfies (2.2). Integration of (1.7) from 𝜂 ∈ (𝑎 − 𝜀, 𝑎) 

to a yields 

  − (𝑓𝑚)′(𝜂) = 𝑝𝜂 𝑓(𝜂) + (𝑝 + 𝑞) ∫ 𝑓(𝜉) 𝑑𝜉
𝑎

𝜂
 (2.3) 

In view of the continuity of 𝑓  and (𝑓𝑚)′  it is 

possible to find 𝜂0 ∈ (𝑎 − 𝜀, 𝑎) such that 𝑓′(𝜂0) < 0  

 Hence, 𝑝 and (𝑝 + 𝑞) cannot both be less than zero. 

 Thus, if 𝑝 = 0, 𝑞 must be positive. Now, suppose 

that 𝑝 < 0. Then by (2.3), 𝑝 + 𝑞 > 0 and hence 𝑞 >

0.  It follows from (1.7) that 𝑓 cannot have a 
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maximum in (𝑎 − 𝜀, 𝑎)  and hence 𝑓′ < 0  on 

(𝑎 − 𝜀, 𝑎). Therefore, (2.3) implies  

  −𝑚𝑓𝑚−2(𝜂)𝑓′(𝜂) − 𝑝𝜂 ≤ (𝑝 + 𝑞)(𝑎 − 𝜂)  (2.4)  

  for all 𝜂 ∈ (𝑎 − 𝜀, 𝑎) . If we now let 𝜂 → 𝑎, we 

obtain a contradiction.  

 

 Hence, 𝑝 > 0. 

 

SOLUTION NEAR 𝜼 = 𝒂 

Let a be an arbitrary positive number. It is clear from 

Lemma 1, that a necessary condition for the 

existence for a positive solution of problem (1.7), 

(2.2) in the neighbourhood of 𝜂 = 𝑎  is that either 

𝑝 > 0 or 𝑝 = 0 and 𝑞 > 0. Now, we show that this 

condition is also sufficient. For that, let 𝑝 = 0 and 

𝑞 > 0. Then we can solve problem (1.7), (2.1),(2.2) 

uniquely and  

 𝑓(𝜂, 𝑎) = {
𝑞(𝑚−1)2

2𝑚(𝑚+1)
(𝑎 − 𝜂)2}

1

𝑚−1
 0 < 𝜂 < 𝑎 (3.1) 

is an unique solution of problem (1.7), (2.2). Because 

𝑓(0, 𝑎)  is continuous, monotonically increasing 

function of a such that 𝑓(0,0) = 0 and 𝑓(0, ∞) = ∞ , 

the equation 𝑓(0, 𝑎) = 𝑓0  is uniquely solvable for 

𝑓0 ≥ 0.  Let 𝑎(𝑓0)  be its solution, then 𝑓 =

𝑓(𝜂, 𝑎(𝑓0)) is an unique solution of problem (1.7), 

(2.1), (2.2). 

 

Now, consider the case when 𝑝 > 0. First we prove 

the following lemma. 

 

LEMMA 2 

Let 𝑏 ∈ (0, 𝑎) and let 𝑓 be a positive solution of the 

problem (1.7), (2.2) on [𝑏, 𝑎).  

If 𝑝 + 𝑞 ≥ 0 then 𝑓′(𝜂) < 0 on [𝑏, 𝑎). 

If 𝑝 + 𝑞 < 0, and there exist an 𝜂0 ∈ [𝑏, 𝑎) such that 

𝑓′(𝜂0) = 0  then 𝑓  has a maximum at 𝜂0  and 𝜂0 <

[
𝑝+𝑞

𝑞
] 𝑎.  

 

If 𝑓 is a positive solution of (1.7), (2.2) on [0, 𝑎) then 

𝑝 + 𝑞 > 0, 𝑓′(0) < 0  

𝑝 + 𝑞 = 0, 𝑓′(0) = 0 

𝑝 + 𝑞 < 0, 𝑓′(0) > 0  

PROOF 

 Integrating of (1.7) from 𝜂 ∈ [𝑏, 𝑎) to a yields (2.3). 

If 𝑝 + 𝑞 ≥ 0,  this implies that (𝑓𝑚)′(𝜂) < 0  and 

hence 𝑓′(𝜂) < 0 on [𝑏, 𝑎). 

If 𝑝 + 𝑞 < 0, we note that 𝑞 < 0 and hence 𝑓′(𝜂0) =

0 ⇒ 𝑓′′(𝜂0) < 0. 

If follows that, 𝑓 has maximum at 𝜂 = 𝜂0  and 

𝑓′(𝜂) < 0 on (𝜂0, 𝑎). 

To estimate 𝜂0, we set 𝜂 = 𝜂0 in (2.3) and using the 

fact that 𝑓′(𝜂0) < 0 on (𝜂0, 𝑎) we obtain, 

0 = 𝑝𝜂0𝑓(𝜂0) + (𝑝 + 𝑞) ∫ 𝑓(𝜉) 𝑑𝜉

𝑎

𝜂0

 

  > 𝑝𝜂0 𝑓(𝜂0) + (𝑝 + 𝑞) ∫ 𝑓(𝜂0) 𝑑𝜉
𝑎

𝜂0
  

 Hence, 𝑝𝜂0 + (𝑝 + 𝑞)(𝑎 − 𝜂0) < 0  or (𝑝 + 𝑞)𝑎 −

𝑞𝜂0 < 0.  

Recalling that, 𝑞 > 0, we obtain upper bound for 𝜂0 

viz. 

   𝜂0 < [
𝑝+𝑞

𝑞
] 𝑎 

Finally, if we set 𝜂 = 0, (2.3) yields,  

   −(𝑓𝑚)′ (0) = (𝑝 + 𝑞) ∫ 𝑓(𝜉) 𝑑𝜉
𝑎

0
 

from which sign of 𝑓′(0) follows. Now, we procced 

for existence. 

 

 LEMMA 3 

Let 𝑝 > 0 and let 𝑞 be arbitrary. Then given any 𝑎 >

0, there exists an 𝜀 > 0 such that problem (1.7), (2.2) 

has a unique positive solution in (𝑎 − 𝜀, 𝑎) 

 PROOF 

As in [3], we reduce the problem to that of 

establishing the local existence of solution of an 

equivalent integral equation. To derive this let 𝑓 be a 

positive solution in (𝑎 − 𝜀, 𝑎) for some 𝜀 > 0. 

 

By lemma 2, it is possible to choose an 𝜀 > 0 such 

that 𝑓′ < 0  in (𝑎 − 𝜀, 𝑎).  Therefore, consider an 

inverse function 𝜂 = 𝜎(𝑓).  

 Rewriting (2.3) as, 

(𝑓𝑚)′(𝜂) = 𝑞𝜂 𝑓(𝜂) − (𝑝 + 𝑞) ∫ 𝑓(𝜉)𝑑𝜉

𝑎

𝜂

 

Hence, 𝜎(𝑓) satisfies the integro-differential equation, 
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𝑑𝜎

𝑑𝑓
=

𝑚 𝑓𝑚−1

𝑞 𝑓 𝜎(𝑓)−(𝑝+𝑞) ∫ 𝜎(𝜙)𝑑𝜙
𝑓

0

 

 Integrating from 0 to f yields, 

𝜎(𝑓) − 𝑎 = 𝑚 ∫
𝜙𝑚−1 𝑑𝜙

𝑞 𝜙 𝜎(𝜙) − (𝑝 + 𝑞) ∫ 𝜎(Ψ)𝑑Ψ
𝜙

0

𝑓

0

  

or introducing 𝜏(𝑓) = 1 − 𝑎−1𝜎 (𝑓) then, 

𝜏(𝑓) =
𝑚

𝑎2  ∫
𝜙𝑚−1 𝑑𝜙

𝑞 𝜙+𝑞 𝜙 𝜏(𝜙)−(𝑝+𝑞) ∫ 𝜏(Ψ)𝑑Ψ
𝜙

0

𝑓

0
  (3.2) 

Now, we prove that, (3.2) has a unique positive 

solution in a right neighborhood of 𝑓 = 0.  

 

Let 𝜆 > 0  and let 𝑋  be a function 𝜏(𝑓)  defined on 

[0. 𝛾], such that 

0 ≤ 𝜏(𝑓) ≤ 𝜌 =
𝑝

2(|𝑞| + |𝑝 + 𝑞|)
  

We denote by ||. || the supremum norm on X, then X 

is a complete metric space. We define the operator,  

  𝑀(𝜏)(𝑓) =
𝑚

𝑎2  ∫
𝜙𝑚−1𝑑𝜙

𝑝𝜙+𝑞𝜙 𝜏(𝜙)−(𝑝+𝑞) ∫ 𝜏(𝜓)𝑑𝜓
𝜙

0

𝑓

0
 

 Let 𝜏 ∈ 𝑋 then, 

 𝑝𝜙 + 𝑞𝜙𝜏(𝜙) − (𝑝 + 𝑞) ∫ 𝜏(𝜓)𝑑𝜓

𝜙

0

 

   ≥ {𝑝 − (|𝑞| + |𝑝 + 𝑞|)||𝜏||} ∙ 𝜙 

   ≥
1

2
𝑝𝜙 

Hence, 𝑀(𝜏)(𝑓) ≤
𝑚

𝑎2 ∫
𝜙𝑚−2

1

2
𝑝𝜙

𝑓

0
𝑑𝜙 ≤

2𝑚

(𝑚−1)𝑝𝑎2  𝛾𝑚−1 

Thus, 𝑀(𝜏) is well defined on the whole of X. Thus,  

𝑀(𝜏): [0, 𝛾] → 𝑅 is non-negative and continuous and 

moreover there exists 𝛾0 > 0 such that if 𝛾 < 𝛾0  and 

𝜏 ∈ 𝑋, ||𝑀(𝜏)|| ≤ 𝜌. 

 

Thus, if 𝛾 ≤ 𝛾0 then, M maps X into X. 

 Let 𝜏1, 𝜏2 ∈ 𝑋 and let 𝛾 ≤ 𝛾0 then, 

 ||𝑀(𝜏1) − 𝑀(𝜏2)||  

 ≤
4𝑚

𝑎2𝑝2  ∫ 𝜙𝑚−3 [|𝑞|𝜙||𝜏1 − 𝜏2|| + |𝑝 +
𝑓

0

𝑞| ∫ ||𝜏1 − 𝜏2|| 𝑑𝜓
𝜙

0
]  𝑑𝜙  

  ≤
4𝑚

(𝑚−1)𝑎2𝑝2  (|𝑞| + |𝑝 + 𝑞|)||𝜏1 − 𝜏2|| ∙ 𝛾𝑚−1  

 

Hence, there exists 𝛾1 ∈ (0, 𝛾0]  such that if 𝛾 ≤

𝛾1, 𝑀 is a contraction on X. thus, by Banach-

Cacciopolo contraction mapping principle [7, p.404], 

M has a unique fixed point in X and equation (3.2) 

has a unique solution. 

 

III. BACKWARD CONTINUATION 

 

Let 𝑎 > 0 and 𝑓(𝜂) be the solution of (1.7), (2.2) we 

constructed in the previous section. Then 𝑓  is 

defined and positive in a left neighborhood of 𝜂 = 𝑎. 

Now, we continue 𝑓 backwards as a function of 𝜂. 

By the standard theory [7], this can be done 

uniquely so long as 𝑓 remains positive and bounded. 

Now, there are three possibilities. 

 

𝑓(𝜂) → ∞ as 𝜂 decreases to some 𝜂1 ∈ [0, 𝑎). 

𝑓(𝜂) can be continued back to 𝜂 = 0. 

𝑓(𝜂) → 0 as 𝜂 decreases to some 𝜂2 ∈ [0, 𝑎). 

 Now, we try to rule out possibility (a). 

 

LEMMA 4 

Let 𝑏 ∈ {0, 𝑎), and let 𝑓  be a positive solution of 

problem (1.7), (3.1) on (𝑏, 𝑎). 

Then, if 𝑝 > 0, 

sup
(𝑏, 𝑎) 𝑓(𝜂) ≤ [

𝑚 − 1

2𝑚
𝑎2 max{𝑝, 2𝑝 + 𝑞}]

1
𝑚−1

 

 

PROOF 

Let 𝑝 + 𝑞 ≥ 0, then by Lemma 2, 𝑓′ < 0  on (𝑏, 𝑎). 

Using in (2.4), we get,  

 −𝑚 𝑓𝑚−2(𝜂)𝑓′(𝜂) ≤ (𝑝 + 𝑞)𝑎 − 𝑞𝜂 𝑏 ≤ 𝜂 ≤ 𝑎.  

 Integration from 𝜂 to a yields, 
𝑚

𝑚−1
 𝑓𝑚−1(𝜂) ≤ (𝑎 − 𝜂) [𝑝𝑎 +

1

2
𝑞(𝑎 − 𝜂)] , 𝑏 ≤ 𝜂 ≤

𝑎 (4.1) 

and hence, 
sup

(𝑏, 𝑎)
𝑚

𝑚−1
 𝑓𝑚−1 (𝜂) ≤

1

2
(2𝑝 + 𝑞)𝑎2  (4.2) 

Let 𝑝 + 𝑞 < 0.  Then, it follows from (2.3), that,    

−𝑚𝑓𝑚−1 (𝜂)𝑓′(𝜂) ≤ 𝑝 𝜂 𝑓(𝜂) 

If we divide by 𝑓(𝜂) and integrate from 𝜂 to a, we 

get, 

 
𝑚

𝑚−1
 𝑓𝑚−1 (𝜂) ≤

1

2
𝑝 (𝑎2 − 𝜂2), 𝑏 ≤ 𝜂 ≤ 𝑎  (4.3) 

 Thus,  
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sup
(𝑏, 𝑎)

𝑚

𝑚−1
𝑓𝑚−1(𝜂) ≤

1

2
𝑝𝑎2   (4.4) 

Because the bound of Lemma 4 is uniform in 𝑏, 𝑓(𝜂) 

can never become unbounded as 𝜂 decreases.  

The estimates (4.1) and (4.3) provide upper bounds 

for 𝑓(𝜂) which also tends to zero as 𝜂 → 𝑎. Lower 

bounds can be derived in exactly the same way, one 

finds 

 

If 𝑝 + 𝑞 ≥ 0. 

 
𝑚

𝑚−1
 𝑓𝑚−1(𝜂) ≥

1

2
𝑝(𝑎2 − 𝜂2), 𝑏 ≤ 𝜂 ≤ 𝑎 (4.5)  

If 𝑝 + 𝑞 < 0. 

 
𝑚

𝑚−1
 𝑓𝑚−1(𝜂) ≥ {𝑝𝑎 +

1

2
𝑞(𝑎 − 𝜂)} (𝑎 − 𝜂),  (4.6) 

 𝑚𝑎𝑥. (𝑏, 𝜂0) ≤ 𝜂 ≤ 𝑎.  

 ≥
1

2
(2𝑝 + 𝑞)(𝑎2 − 𝜂2).  

 

The following lemma distinguishes between the 

possibilities (b) and (c). 

 

LEMMA 5 

Let 𝑓 be the positive solution of problem (1.7),(2.2) 

in a left neighbourhood of 𝜂 = 𝑎. Assume that 𝑝 > 0, 

then, 

If (2𝑝 + 𝑞) > 0, 𝑓(𝜂) > 0 on [0, 𝑎). 

If (2𝑝 + 1) = 0, 𝑓(𝜂) > 0 on (0, 𝑎) and 𝑓(0) = 0.  

If (2𝑝 + 𝑞) < 0, there exists on 𝜂∗ ∈ (0, 𝑎) such that 

𝑓(𝜂∗) > 0 on (𝜂∗, 𝑎) and 𝑓(𝜂∗) = 0. 

 

PROOF 

Integrating of (2.3) from 𝜂 to a yields the following 

integral equation for 𝑓: 

 (𝑓𝑚)(𝜂) = 𝑝𝜂 ∫ 𝑓(𝜉)𝑑𝜉
𝑎

𝜂
+ (2𝑝 + 𝑞) ∫ (𝜉 −

𝑎

𝜂

𝜂)𝑓(𝜉)𝑑𝜉 (4.7) 

 

Now, suppose 2𝑝 + 𝑞 > 0,  then by the previous 

Lemma we may continue 𝑓(𝜂)  back to 𝜂 = 0, and 

𝑓(0) > 0. However, using the bounds for 𝑓, we can 

actually give upper and lower bounds for 𝑓(0). This 

can be done by the following proposition and for 

that we define the quantities, 

  𝜆 =
2𝑝+𝑞

𝑝
, 𝜇 =  1 − [

𝑝+𝑞

𝑝
]

2
, 𝐴 = [

𝑚−1

2𝑚
𝑝𝑎2]

1

𝑚−1  

 

 PROPOSITION 1 

 Let 𝑝 > 0, and 2𝑝 + 𝑞 > 0, then,  

If 𝑝 + 𝑞 ≥ 0 (𝜆 ≥ 1)  

𝜆
1

𝑚𝐴 ≤ 𝑓(0) ≤ 𝜆
1

𝑚−1
 𝐴  

If 𝑝 + 𝑞 ≤ 0 (0 < 𝜆 ≤ 1) 

(𝜇 𝜆)
1

𝑚−1𝐴 ≤ 𝑓(0) ≤ 𝜆
1

𝑚 𝐴  

 

Both estimates are sharp for 𝑝 + 𝑞 = 0  

 

PROOF 

The upper bound follows at once from (4.1). To 

obtain lower bound, we use (4.6)  

 in (4.7),  

 

(𝑓𝑚)(0) = (2𝑝 + 𝑞) ∫ 𝑓(𝜉)𝑑𝜉
𝑎

0
  (4.8) 

 

Result follows after an elementary computation, 

In this case, we only have a bound for 𝑓  on 

[𝜂0, 𝑎), where 𝜂0 is the value for 𝜂 for  

 

 which 𝑓 reaches to maximum. By (4.3) and (4.6), 

 

𝜆
1

𝑚−1
 𝐴 [1 −

𝜂2

𝑎2]

1

𝑚−1
≤ 𝑓(𝜂) ≤ 𝐴 [1 −

𝜂2

𝑎2]

1

𝑚−1
 , 𝜂0 ≤

𝜂 ≤ 𝑎 (4.9) 

 

However 𝑓(𝜂) ≤ 𝑓(𝜂0) on [0, 𝜂0] and therefore (4.9) 

holds for 0 ≤ 𝜂 ≤ 𝑎.  Using (4.9) in (4.8), we get 

desired upper bound. 

 

To obtain lower bound, we note by (4.8), that  

(𝑓𝑚)(0) ≥ (2𝑝 + 𝑞) ∫ 𝜉 𝑓(𝜉)𝑑𝜉
𝑎

𝑎∗
  (4.10) 

 𝑤ℎ𝑒𝑟𝑒 𝑎∗ =
𝑝+𝑞

𝑝
𝑎. 

 

Because by Lemma 2, 𝜂0 ≤ 𝑎∗  we can use (4.9) in 

(4.10) to estimate 𝑓(0), we conclude this with a 

result about the dependence of 𝑓 on the choice of 𝑎∗. 
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PROPOSITION 2 

 

Let 𝑝 > 0  and 2𝑝 + 𝑞 ≥ 0 . Suppose 𝑓(𝜂, 𝑎1)  and 

𝑓(𝜂, 𝑎2)  are solutions of problem (1.7), (2.2) on 

(0, 𝑎1)  and (0, 𝑎2)  respectively. Then if 𝑎1 >

𝑎2, 𝑓(𝜂, 𝑎1) > 𝑓(𝜂, 𝑎2) everywhere on (0, 𝑎2).  

 

PROOF 

 

We denote 𝑓(𝜂, 𝑎1) by 𝑓𝑖(𝜂) 𝑓𝑜𝑟 𝑖 = 1,2.  

Suppose proposition is not true, therefore there 

exists an 𝜂 ̅ ∈ (0, 𝑎2) such that 𝑓1(𝜂 ̅) = 𝑓2(𝜂 ̅)  and 

𝑓1(𝜂) > 𝑓2(𝜂) on (𝜂 ̅, 𝑎2).  

It follows from (4.7) that for 𝑖 = 1,2 

 𝑓𝑖
𝑚(𝜂 ̅) = 𝑝 𝜂 ̅ ∫ 𝑓𝑖(𝜉)

𝑎𝑖

𝜂 ̅

 𝑑𝜉 

+ (2𝑝 + 𝑞) ∫ (𝜉 − 𝜂 ̅)𝑓𝑖(𝜉)𝑑𝜉

𝑎𝑖

𝜂 ̅

  

 Here, 𝑝 𝜂 ̅ ∫ 𝑓1(𝜉)
𝑎1

𝑎2
 𝑑𝜉 + (2𝑝 + 𝑞) ∫ (𝜉 −

𝑎1

𝑎2

𝜂)𝑓𝑖(𝜉)𝑑𝜉 

  +𝑝 𝜂 ̅ ∫ [𝑓1(𝜉) − 𝑓2(𝜉)]
𝑎2

𝜂 ̅
 𝑑𝜉 + (2𝑝 + 𝑞) ∫ (𝜉 −

𝑎2

𝜂 ̅

𝜂 ̅)[𝑓1(𝜉) − 𝑓2(𝜉)]𝑑𝜉  = 0  

 

The second and the fourth term of this expression 

are non-negative, while the other two are positive, 

therefore we have a contradiction. 

 

IV. MAIN RESULT 

 

We now begin by proving existence and uniqueness 

of the solution of problem (1.7), (2.1), (2.2) which is 

positive on (0, 𝑎).  By Lemma 1, a necessary 

condition for the existence of such a solution is that 

𝑝 ≥ 0. 

 

Let 𝑝 > 0. Then by Lemma 3, for each 𝑎 > 0, there 

exists a unique positive solution 𝑓(𝜂, 𝑎) of (1.7), (2.2) 

in a left neighborhood of 𝜂 = 𝑎. By Lemma 5, this 

solution can be continued back to 𝜂 = 0 if and only 

if 2𝑝 + 𝑞 ≥ 0. Thus, the boundary condition at 𝜂 =

0 is satisfied if we can find an 𝑎 > 0 such that 

 

𝑓(0, 𝑎) = 𝑓0       (5.1) 

 

If only one such a exists, the solution is unique.  

 

Here two cases arise 

𝑓0 = 0 Then, by Lemma 5, equation (4.1) can only be 

satisfied if 2𝑝 + 𝑞 = 0.  Moreover, (5.1) is then 

satisfied for any 𝑎 > 0.  

 

𝑓0 > 0. Then, by Lemma 5, a necessary condition for 

(5.1) to have solution is that 2𝑝 + 𝑞 > 0. To prove 

that, it is sufficient we use observation due to 

Bareblatt [8].  

 

Let 𝑓(𝜂, 𝑎)  be a solution problem (1.7), (2.2) on 

(0, 𝑎). Thus, choosing 𝜇 = 𝑎−1, 

𝑓(0, 𝑎) = 𝑎
2

𝑚−1𝑓(0,1) 

 

Therefore (5.1) can be written as 

   𝑎
2

𝑚−1
 𝑓(0,1) = 𝑓0  (5.2) 

 

Because 2𝑝 + 𝑞 > 0, 𝑓(0,1) > 0. It follows that for 

each 𝑓0 > 0  equation (5.2) has a unique solution 

𝑎 (𝑓0) . The function 𝑓 (𝜂, 𝑎(𝑓0))  now satisfies 

(1.7),(2.1), (2.2). In view of the uniqueness of 𝑎(𝑓0) 

it is the only function which does so. Remembering 

the solution we constructed for 𝑝 = 0, we have 

proved the following results. 

 

THEOREM 1 

Let 𝑓0 > 0, then there exists a unique 𝑎 > 0  and a 

unique solution of problem (1.7), (2.1), (2.2) which is 

positive on (0, 𝑎) if and only if 𝑝 ≥ 0 and 2𝑝 + 𝑞 >

0. 

 

Let 𝑓0 = 0 . Then for every 𝑎 > 0  there exists a 

unique solution of problem (1.7), (2.1), (2.2) which is 
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positive on (0, 𝑎) if and only if 𝑝 > 0 and 2𝑝 + 𝑞 =

0. 

 

Therefore, it is easy to see that 

 𝑓(𝜂) = {
𝑓(𝜂, 𝑎) 0 ≤ 𝜂 < 𝑎

0 𝑎 ≤ 𝜂 < ∞
  

 

is a weak solution of (1.7) which satisfies the 

boundary condition (1.8). Hence, we show that if 

𝑓0 > 0, this is the only solution of problem (1.7), (1.8) 

with compact support and that if 𝑓0 = 0 this is the 

only family of non-trivial solution of problem (1.7), 

(1.8) with compact support.  

 

Let 𝑓(𝜂) be a weak solution of the problem (1.7), 

(1.8) with compact support. Therefore, it follows 

from Lemma 5, that if 𝑓0 > 0, problem (1.7), (1.8) 

only has such a solution if 2𝑝 + 𝑞 > 0 and it is of the 

form 

 

 𝑓(𝜂) > 0 on [0, 𝑎).  

 𝑓(𝜂) = 0 on [𝑎, ∞). 

 

for some 𝑎 > 0.  That is, 𝑓  must be of the type 

discussed above, and by Theorem 1, there exists only 

one such solution.  

 

If 𝑓0 = 0, besides the family of solution discussed 

above, one might expect non-trivial solution which 

are zero on a disconnected subset of (0, ∞). We now 

prove that such solution cannot exist. 

 

Let 𝑓  be a weak solution such that 𝑓 > 0 on 

(𝑎2, 𝑎1), where 0 < 𝑎1 < 𝑎2 < ∞  and 𝑓 = 0 at 𝜂 =

𝑎1 and 𝜂 = 𝑎2. Then, for 𝑓 to be a weak solution of 

(1.7), we require,  

𝑓(𝑎𝑖) = 0, (𝑓𝑚)′(𝑎𝑖) = 0 𝑖 = 1,2. 

 

On (𝑎1, 𝑎2), 𝑓 is a classical solution of (1.7) and 

hence integration of (1.7) from 𝑎1 to 𝑎2 yields  

0 = (𝑝 + 𝑞) ∫ 𝑓(𝜉)𝑑𝜉

𝑎2

𝑎1

  

 

Because 𝑝 + 𝑞 = (2𝑝 + 𝑞) − 𝑝 < 0  and 𝑓 > 0 on 

(𝑎1, 𝑎2) we arrive at a contradiction . 

 

It follows that if 𝑓0 = 0, any weak solution of 

problem (1.7),(1.8) with compact support must 

belong to the family of solution discussed above. 

Thus, we have proved the following theorem. 

 

Theorem 2 

 

Let 𝑓0 > 0. Then there exists a unique weak solution 

with compact support of problem (1.7), (1.8) if and 

only if 𝑝 ≥ 0 and 2𝑝 + 𝑞 > 0 

 

Let 𝑓0 = 0 . Then there exists a non-trivial weak 

solution with compact support of (1.7), (1.8) if and 

only if 𝑝 > 0  and 2𝑝 + 𝑞 = 0.  For solution 𝑓 with 

the property 𝑓 > 0 on (0, 𝑎) and 𝑓 = 0 on [𝑎, ∞).  
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